If you're looking for CCNP Interview Questions for Experienced or Freshers, you are at the right place. There are a lot of opportunities from many reputed companies in the world. According to research CCNP has a salary range from $36,000 to $194,000.
So, You still have the opportunity to move ahead in your career in CCNP Engineering. Mindmajix offers Advanced CCNP Interview Questions 2024 that help you in cracking your interview & acquire a dream career as CCNP Engineer. If in case you have attended any CCNP interviews earlier and are unable to find the same questions here, then feel free to comment on those questions in the comment section, and we will update them in this CCNP interview questions blog so that it could help other students to learn from your experience.
We have categorized CCNP Interview Questions into 2 levels they are:
Below mentioned are the Top Frequently asked CCNP Interview Questions and Answers that will help you to prepare for the CCNP interview. Let's have a look at them.
Ans: A postal address has three components that can be used to deliver mail: state, city, and street. A phone number has an area code and exchange. At the core layer, mail can be delivered to the next post office based on only the state or city and state information. A phone number is delivered at the core layer based on the area code.
If you want to enrich your career and become a professional in CCNP, then visit Mindmajix - a global online training platform: "CCNP Online Training" This course will help you to achieve excellence in this domain. |
Ans: A default route is used if there is not a specific entry in the routing table for the destination.
Ans: Routing moves a letter or telephone call to the access layer (as in a street or telephone exchange). Switching makes the final delivery. A switching decision is made on the part of the address that is not used in routing (as in the street number or last four digits of a phone number).
Ans: At the core layer in the postal system, the only information that is needed to make a routing decision is the state or city/state information. The specific street names and street numbers are hidden, the core layer does not need this information.
At the core layer in the telephone system, the area code is used to make a routing decision. The specific exchange or last four digits of the phone number are not needed, or hidden, from the core layer.
Ans: If a delivery system is not divided into access, distribution, and core layers, every point in the system needs to maintain every possible destination address to make a delivery decision. The use of a layered system means each layer needs only the information necessary to deliver to the next layer, either above or below.
Ans: Using multiple protocols is modular and allows changes to one protocol without affecting the others. For example, if the addressing protocol is dependent on the delivery protocol, changes to one would imply changes need to be made to the other.
Ans: The airport system. At the core routing level, there are major hub airports such as Denver, Chicago, New York, and Atlanta. The core airports are responsible for routing people and cargo to major geographical areas.
Core airports connect with regional airports that serve a specific area; regional airports are at the distribution layer. Finally, to reach your final destination, you can take a bus, a cab, a train, or rent a car. This can be considered the access layer.
Related Article: CCNA Vs CCNP - Differences |
Ans: The source address is not used unless the letter needs to be returned to the sender. Using the destination address, the access level post office in New York examines the state, city, and street information to determine if it is directly connected to the destination.
If not, the letter is sent to the distribution layer post office using a default route. The distribution layer post office also examines the state, city, and street information to determine if it is directly connected to an access layer post office servicing the particular street. If it isn’t, the letter is routed to the core level using a default route.
The core level post office examines the state name, and if the state name does not equal New York, the letter is delivered to the core post office for the state of California. The California core post office delivers the letter to the distribution post office that handles the city of San Diego.
The San Diego distribution post office delivers the letter to the access post office that handles the destination street. Finally, the access level switch delivers the letter to the proper destination.
Ans: The street name and number are the access layer components. The city name is the distribution layer component. The state name is the core layer component.
Ans: The last four digits are used at the access layer to identify a particular telephone. The next three numbers are used at the distribution layer to identify an exchange that services several phone numbers. The area code is used at the core level for routing between different regions.
This is a speed drill. Using only your head, convert the following binary numbers to decimals.
Ans: FA 16 = 250 10, CE16 = 20610, 1216 = 18 10, and 34 16 = 52 10
FACE1234 16 = 250.206.18.52 dotted decimal
Ans: A2F59D8B
Ans: Convert to dotted hexadecimal first, and then convert each hexadecimal number pair to decimal. A2.F5.9D.8B then 162.245.157.139
Ans: 24275316613 8
Ans: Answer is True
Ans: Convert each octal digit into three binary digits, and then convert the binary result to hexadecimal. 001 010 011 100 101 110 111 000
0010 1001 1100 1011 1011 1000
29CBB8
Ans: 111 011 100 010 001 101
Ans: 0111 0011 0100 0010 0001 0101 2
Ans: 142.16.73.255
Ans: 198.4.81.0/27 and the subnets are: 198.4.81.0/27
Ans: 198.4.81.127
Ans:
Ans: 132.16.0.0/11 because it matches more network bits than 132.0.0.0/8. Network 132.16.233.0/22 and 132.19.237.5/22 do not match the network address.
Ans: 172.16.53.97 through 172.16.53.126
Ans: 64 because 2 bits are needed for the hosts on the network, leaving 6 bits for the subnet.
Ans: FF02:0000:0000:0000:0000:0000:130F:0005
Ans: Classless routing protocols advertise subnet mask information along with the network prefixes. Classful routing protocols do not. Therefore, for a classful protocol, all subnets for the major network number being used must be the same length. Also, the classful protocol cannot support discontiguous network prefixes.
Ans: The passive state means that a router has a successor for a route. The active state means that a router does not have a successor or feasible successor for a route and is actively sending queries to neighbors to get information about the route.
Ans: The reported distance to a route that is sent to another router is the feasible distance on the reporting router. Feasible distance is the reported distance plus the metric between the receiving and reporting routers. The route with the lowest feasible distance is the successor. Any routes with a reported distance that is less than the feasible distance are feasible successors.
Ans:
You need to examine the third byte because that is the byte where the four prefixes differ: 0 = 0 0 0 0 0 0 0 0
The last 7 bits are irrelevant, so the mask is 1 0 0 0 0 0 0 0 and the EIGRP command is ip summary-address eigrp 1 10.1.0.0 255.255.128.0.
Ans: Areas allow the design of a hierarchical network. Routes can be summarized or blocked in an area to reduce the amount of routing information on internal OSPF routers.
Ans: OSPF databases on routers in the same area must be identical. If route summarization was allowed within an area, some routers would have specific routes and some routers would have summary routes for routes in the area. If this were allowed, the databases for the area would never agree.
Ans: OSPF intra-area and interarea routes, and a default route. External routes are not advertised in a stub area.
Ans: OSPF intra-area routes and a default route. OSPF interarea and external routes are not advertised in a totally stubby area.
Ans: OSPF intra-area and interarea routes, and possibly a default route. External routes from ABRs are blocked, and external routes from ASBRs are converted to N1 or N2 routes.
Ans: OSPF intra-area routes and a default route. External routes from ABRs are blocked, and external routes from ASBRs are converted to N1 or N2 routes.
Ans: An E1 route contains the OSPF cost to reach the ASBR plus the cost from the ASBR to the external route. An E2 route contains only the cost from the ASBR to the external route.
Ans: ABR, internal router, and ASBR.
Ans:
Ans: OSPF routes are summarized on an ABR. External routes are summarized on an ASBR.
Ans: If physical interfaces are only used, the OSPF router ID is the highest IP address assigned to an active physical interface. If loopback interfaces are used, the OSPF router ID is the highest IP address assigned to a loopback interface. If the router-id command is used with the OSPF configuration, the address used with this command will be the router ID.
Ans: The router with the highest interface priority will be the router ID. If all the interface priorities on the multi-access network are the same, the router with the highest router ID will be the DR.
Ans: First, calculate the shortest path to an ABR.
Second, calculate the shortest path across area 0 to an ABR that is attached to the destination area. Third, calculate the shortest path across the destination area from the ABR to the destination network.
Ans: To connect a nonzero area to the backbone if the nonzero area becomes disconnected from the backbone. A virtual link can also be used if the backbone, or area 0, becomes discontiguous.
Ans: By default, the cost of an OSPF interface is 100,000,000/(Interface Bandwidth). The constant 100,000,000 can be changed using the auto-cost reference-bandwidth command.
Ans:
Ans: Area 1 range 188.14.19.0 255.255.255.192
Ans: The number of OSPF databases on a router is equal to the number of OSPF areas configured on the router.
Ans: 110
Ans: EIGRP has an administrative distance of 90. IGRP has an administrative distance of 100. OSPF has an administrative distance of 110. RIP has an administrative distance of 120. Therefore, the EIGRP route is preferred.
Ans: An NSAP address has a length of 8 to 20 bytes and consists of three components:
Ans: The loopback address written in dotted decimal and using three digits for each byte has a value of 135.077.009.254. The system ID is 13.50.77.00.92.54.
Ans: OSPF has a backbone area or area 0. All nonzero areas must be connected to the backbone through a router or a virtual link. IS-IS has a backbone area made up of a contiguous chain of Level 2 capable routers.
Ans: Level 1 routing is routing between destinations in the same IS-IS area
Ans: Intra-area routing.
Ans: A Level 1-2 router has two IS-IS databases.
Ans: An Area Border Router (ABR).
Ans: By default, all routes are advertised into all OSPF areas. This includes interarea OSPF routes and external routes that have been injected into OSPF. By default, IS-IS does not advertise interarea or external routes into an area but injects a default route.
Ans: Redistribution of Level 2 routes into an area as Level 1 routes.
Ans: An OSPF interface metric is determined from the interface bandwidth. By default, all IS-IS interface metrics are equal to 10.
Ans: A narrow metric uses 6 bits for the interface metric and 10 bits for the path metric. A wide metric uses 24 bits for the interface metric and 32 bits for the path metric.
Ans:
Ans: If a router has more than one route to the same IP prefix, the best path is the one with the shortest AS_PATH (assuming other BGP attributes are equal).
Ans: If a router has more than one route to the same IP prefix, the best path is the one with the highest WEIGHT value.
Ans: WEIGHT has only local significance and is not advertised to BGP peers.
Ans: If a router has more than one route to the same IP prefix, the best path is the one with the highest LOCAL_PREF (assuming the WEIGHT attribute for the routes is equal).
Ans: The LOCAL_PREF attribute is advertised throughout the autonomous system.
Ans: MED is used to prefer a path into an autonomous system. A lower MED value is preferred.
Ans: WEIGHT, LOACL_PREF, AS_PATH, MED
Ans:
Ans: BGP checks the NEXT_HOP attribute to determine if the NEXT_HOP is accessible or in the IP routing table.
Ans: Synchronization is a property of IBGP. An IBGP router will not accept a prefix received from an IBGP neighbor if the prefix is not already in the IP routing table.
Ans: Route reflector and confederation.
Ans: BGP uses the AS_PATH attribute for loop detection. If a router sees its own AS number in a BGP advertisement, the advertisement is dropped. IBGP routers have the same AS number so the AS number cannot be used for loop detection. IBGP neighbors will not advertise prefixes learned from one IBGP neighbor to another IBGP neighbor; therefore, a full mesh is required.
Ans: When a summary address is created with an IGP (EIGRP, OSPF, and IS-IS), the specific routes of the summary are not advertised. BGP advertises the summary, and all the specific routes of the summary unless they are specifically suppressed.
Ans: RIP version 1 and IGRP are classful protocols and do not advertise subnet mask information. RIP version 2 has a limited network diameter of 15 hops. EIGRP, OSPF, and IS-IS use computational intensive algorithms for determining the shortest path. BGP relies on simple techniques for best path selection and loop detection and can handle the number of network prefixes required for Internet routing.
Ans: Well-known mandatory, well-known discretionary, optional transitive, and optional nontransitive.
Ans: Unicast IP packets are forwarded based on the destination IP address. Multicast packets are forward based on the source IP address. If a multicast packet is received on the interface used to send a unicast packet back to the source, the multicast packet is forwarded to multicast neighbors.
If the multicast packet is received on an interface that would not be used to send a unicast IP packet back to the source, the packet is discarded.
Ans: Dense mode multicast assumes all multicast neighbors want to receive all multicast traffic unless the neighbors have specifically pruned the traffic. Sparse mode multicast assumes multicast neighbors do not want to receive multicast traffic unless they have asked for it.
The dense mode uses source-based delivery trees while the sparse mode uses shared delivery trees where traffic is first sent to an RP.
Ans: The base Ethernet multicast address is 01 00 5E 00 00 00. The first byte of the IP multicast address is not used. If the second byte is greater than 127, subtract 128, giving a value of 0. The third and fourth bytes of the IP address are used as-is after converting to hex. Their values, in hexadecimal, are 40 and 0C. So the Ethernet multicast address for the IP multicast address 227.128.64.12 is 01 00 5E 00 40 0C.
Ans: The low-order 32 bits of the IP address determine the multicast Ethernet address. The first four bits are always 1 1 1 0 and the next five bits can be anything. Therefore, the IP multicast addresses that map to the multicast Ethernet address of 01 00 5E 00 40 0C are
1110 0000 0000 0000 0100 0000 1100 = 224.0.64.12
1110 0000 1000 0000 0100 0000 1100 = 224.128.64.12
1110 0001 0000 0000 0100 0000 1100 = 225.0.64.12
Ans: Multicast forwarding decisions are based on the entries in the unicast IP routing table. Multicast is not dependent on how the unicast IP routing table was built; you can use any dynamic interior routing protocol, static routes, or a combination of the two.
Ans: CGMP and IGMP Snooping
Ans: Two or more RPs are configured with the same IP address. The IP addresses of the RPs are advertised using a unicast IP routing protocol. Each multicast router chooses the closest RP. If an RP fails, the routers switch to the next nearest RP after the unicast IP routing protocol converges. The MSDP is used between RPs to exchange active multicast source information.
Ans: 224.0.0.0-239.255.255.255
Ans: Used with PIMSM Auto-RP and version 2. If the RPs fail, the router reverts to dense mode.
Ans: An RP is a focal point for multicast traffic. Traffic is forwarded to the RP from multicast sources. The RP then forwards traffic to multicast receivers.
Explore CCNP Sample Resumes! Download & Edit, Get Noticed by Top Employers!
Name | Dates | |
---|---|---|
CCNP Training | Nov 02 to Nov 17 | View Details |
CCNP Training | Nov 05 to Nov 20 | View Details |
CCNP Training | Nov 09 to Nov 24 | View Details |
CCNP Training | Nov 12 to Nov 27 | View Details |
Ravindra Savaram is a Technical Lead at Mindmajix.com. His passion lies in writing articles on the most popular IT platforms including Machine learning, DevOps, Data Science, Artificial Intelligence, RPA, Deep Learning, and so on. You can stay up to date on all these technologies by following him on LinkedIn and Twitter.