Do you want to understand Apache Kafka in-depth? You've reached the right place. Here, in this Apache Kafka tutorial, you'll get a brief explanation of all aspects that surround Apache Kafka. We'll begin with the basics and progress through all of Apache Kafka's major topics.
Apache Kafka is an open-source event streaming platform that collects, processes, stores, and integrates data at scale. Over 80% of Fortune 100 companies including, LinkedIn, Netflix, and Microsoft, also use Apache Kafka.
If you want to gain knowledge about Apache Kafka, then you are at the right place. In this Apache Kafka tutorial, we give the complete details from basics to advanced.
Apache Kafka Tutorial - Table Of Content |
Apache Kafka was launched in 2011 for message transfers and is written in Scala and Java programming languages. It can manage trillions of data per day.
Kafka is a distributed channel that includes different servers and customers that communicate through a TCP network protocol. The programs enable us to read, write, save and process the events. An event is an independent piece of data that must be relayed from producer to consumer.
Kafka allows you to create an app that continuously and accurately uses and processes multiple streams at high speed. It works for managing the data from various data sources.
With Kafka, you can;
If you want to enrich your career and become a professional in Apache Kafka, then enrol in the "Apache Kafka Course" - This course will help you to achieve excellence in this domain. |
Here are some of the great reasons that describe the why to learn Apache Kafka:
Kafka can easily connect with any other information source in the traditional business data system, modern databases, or the cloud. It creates an efficient integration with built-in connectors without hiding logic or navigating inside brittle and centralized infrastructure.
As a distributed pub/ sub messaging platform, Kafka performs as the best-modernized version of a traditional message broker. Any time a process that develops events must be disconnected from the processor receiving the events, Kafka is a measurable and flexible way to get the task done.
A modern system is a distributed system, and logging data must be centralized from multiple system components to one place. Kafka serves as a single source of truth by concentrating information across all sources, rather than quantity or volume.
One lakh businesses worldwide use Kafka, and it’s supported by a thriving community of experts who constantly advance the state-of-the-art in optimizing processing together. Due to Kafka’s high throughput, resilience, scalability, and fault tolerance, many use cases exist in almost all industries, from fraud findings, in the banking sector to transportation and IoT.
To perform real-time calculations on event streams is a core competency of Kafka. From accurate data processing to dataflow programming, Kafka ingests, saves, and processes the data developed at any scale.
Kafka is often used for analyzing operational data. It includes aggregating statistics from distributed applications to develop centralized posts with actual metrics.
The primary task to streamline the system is to transfer the information from one application to another so that the app can mainly work on data without stressing sharing it.
Distributed messaging depends on the reliable message queuing process. The messages are queued as non – synchronously between the messaging system and customer applications.
Here are two kinds of messaging portals are available:
In this messaging portal, messages remain as topics, but in a point-to-point messaging system, clients can take more than one Topic and use every message in that Topic. Those who generate messages are known as Publishers, and Kafka consumers are known as subscribers.
In this messaging system, messages continue to remain in the queue. More than one client can consume the message in the row, but one client uses only one message at one time. As the consumer reads the message, it will disappear from that row.
Below are some of the design considerations of Apache Kafka:
Related Article: Apache Kafka Interview Questions |
Kafka is used in multiple ways, but here are a few examples of various use cases that are shared on the Official Kafka Website:
A streaming process is the transformation of data in collateral-connected systems. This process enables several applications to limit the collateral data execution, where one record performs without waiting for the previous record result. Therefore, distributed streaming portals allow the user to clarify the work of optimizing process and collateral execution. However, a streaming portal in Kafka has the following vital potentials:
To learn and understand Apache Kafka, the applicant should know the following four core APIs:
Also Read: Kafka vs RabbitMQ |
By using these components, Kafka reaches messaging:
Apache Kafka is an effective and powerful allotted system. Kafka’s scaling abilities allow it to deal with massive workloads. It’s frequently the preferred desire over different message queues for actual data pipelines. Overall, it’s a flexible platform that supports many use cases.
Name | Dates | |
---|---|---|
Apache Kafka Training | Oct 12 to Oct 27 | View Details |
Apache Kafka Training | Oct 15 to Oct 30 | View Details |
Apache Kafka Training | Oct 19 to Nov 03 | View Details |
Apache Kafka Training | Oct 22 to Nov 06 | View Details |
Madhuri is a Senior Content Creator at MindMajix. She has written about a range of different topics on various technologies, which include, Splunk, Tensorflow, Selenium, and CEH. She spends most of her time researching on technology, and startups. Connect with her via LinkedIn and Twitter .