What are the different types of regression that are available for the individuals to understand their concepts?
Have you ever wanted to know how those people at the Investment banks know which shares are going to rise by how much and by when?
Or did you ever wanted to know that how the corporates determine the prices that make their product sales and profit optimum?
Then you are in the right place, it is not magic but it is just regression analysis.
If you would like to become an SPSS Certified professional, then visit Mindmajix - A Global online training platform:" SPSS Certification Training Course ". This course will help you to achieve excellence in this domain.
Regression analysis is a set of statistics tools and processes that allow the analyst to devise an estimated mathematical relationship between the causal effects and the end result.
[ Related Article :- Multilple Regression ]
As we have now understood what Regression Analysis is, let us spend some time and go through different types of regressions that are available.
There is majorly seven kinds of regression, but many other hybrids have been developed to match the requirements of the user. The seven kind of regression is as follows:
This is the most common and easiest of the regression process.
The Linear Regression is used to develop a relationship between an independent/causal variable and the dependent/result variable by fitting the pattern into the best fit. The best fit straight line is also known as the regression line.
Which is the dependent variable and e is the variable for other lurking/ unknown factors.
It is used to predict the probability of an event where the result is binary that is either yes or no.
A logistic Regression is a complex process and thus requires a larger sample size and needs to avoid correlated dependent variables.
A regression where the dependent variable is a function of a polynomial function of independent variables is said to be a polynomial regression.
This is a regression which is used to determine the formula for a dependent variable which is affected by different factors in different parts of its life cycle.
Ridge regression is used in case of highly correlated multi-independent factor related dependent variables. It is used to undermine the impact of each factor on the other.
While a Lasso regression is very similar to ridge regression but unlike the latter case, it does not require the data to be normal.
ElasticNet regression is used when there are more than one dominant independent variables amidst a list of many correlated independent variables.
Along with these seasonality & time value factors are often used to determine the type of regression.
Example:
A study of the impact of height on body weight was done and a relation was found to be existing between the estimated weights of a person after a certain minimum height. The correlation was found to be positive, just as logic suggests. It is fitted in a linear regression which works on the idea of minimum sum of squares of standard deviation. The results can be found as bellow-
So in this article, we talked about all the different types of regressions that are available for us to study and be aware of their concepts. I hope you have enjoyed reading this article, if you think any of the topics would be beneficial to add the above, please let us know your suggestions through the comments section.
Our work-support plans provide precise options as per your project tasks. Whether you are a newbie or an experienced professional seeking assistance in completing project tasks, we are here with the following plans to meet your custom needs:
Name | Dates | |
---|---|---|
IBM SPSS Training | Dec 24 to Jan 08 | View Details |
IBM SPSS Training | Dec 28 to Jan 12 | View Details |
IBM SPSS Training | Dec 31 to Jan 15 | View Details |
IBM SPSS Training | Jan 04 to Jan 19 | View Details |
Ravindra Savaram is a Technical Lead at Mindmajix.com. His passion lies in writing articles on the most popular IT platforms including Machine learning, DevOps, Data Science, Artificial Intelligence, RPA, Deep Learning, and so on. You can stay up to date on all these technologies by following him on LinkedIn and Twitter.