Blog

  • Home
  • LabVIEW
  • Miscellaneous Solved Problems in Modular Programming - LabVIEW

Miscellaneous Solved Problems in Modular Programming - LabVIEW

  • (4.0)
  • | 2137 Ratings

1.Create a VI to compute full adder logic using half adder logic as subVI.
Solution:  The front panel and the block diagrams for the half adder is shown in Figures P3.1(a) and P3.1(b). Create a subVI called “HALF” and use this in the main VI to create a full adder as given in Figures P3.1(c) and P3.1(d).
half adder

2.Create a VI to find the decimal equivalent of a binary number using subVI.
Solution:To find the decimal equivalent of a binary number, first create the front panel and the block diagram as given in Figures P3.2(a) and P3.2(b). Then create the subVI called “Binary to decimal” and use it in the main VI as shown in Figures P3.2(c) and P3.2(d).

Enhance your IT skills and proficiency by taking up the LabVIEW Training.


Binary to decimal

3.Create a VI to find the Grey code equivalent of a BCD number using subVIs.
Solution: Create the front panel and the block diagram as given in Figure P3.3(a) and P3.3(b). Then create the subVI called “BCD to GRAY” and use it in the main VI as shown in Figure P3.3(c) and P3.3(d).
BCD to Grey

4.Create a VI to find the roots of a quadratic equation using subVIs. Find both the values of the roots and the nature of the roots.
Solution: Create the front panel and the block diagram as shown in Figures P3.4(a) and P3.4(b). Then create the subVI and use it in the main VI as shown in Figures P3.4(c) and P3.4(d).

Frequently Asked LabVIEW Interview Questions & Answers


quadratic equations

Block diagram

5.Create a VI to find the average of two numbers and convert a section of a VI into a subVI.
Solution: The block diagram to find the average of two numbers and convert a section of a VI into a subVI by selecting that portion is shown in Figures P3.5(a) and P3.5(b) respectively.
avg of two numbers

6.Create the front panel and block diagram of the Main VI to show the trigonometric values (sine, cosine and tangent) of the given degree. This VI uses a subVI for finding the trigonometric values. The SubVI consists of functions for converting degree values to radians and functions to find the sine, cosine and tangent values separately. In LabVIEW the sine, cosine and tangent functions take input in radians.
Solution:  Create the front panel and the block diagram as shown in Figures (a) and (b).

radian functions

Check Out LabVIEW Tutorials


Subscribe For Free Demo

Free Demo for Corporate & Online Trainings.

Ravindra Savaram
About The Author

Ravindra Savaram is a Content Lead at Mindmajix.com. His passion lies in writing articles on the most popular IT platforms including Machine learning, DevOps, Data Science, Artificial Intelligence, RPA, Deep Learning, and so on. You can stay up to date on all these technologies by following him on LinkedIn and Twitter.


DMCA.com Protection Status

Close
Close