What is big data? What is a big data engineer? How to become a big data engineer? Do you have such questions and are curious to get the answers? No worries! We will help you with the correct answers. In this blog, we provide you with all the must-haves to become a big data engineer. In addition, we guide you with a roadmap to optimize your journey to becoming a competent big data engineer.
Data storage and processing have been leaps and bounds in the last two decades. Whether finance, manufacturing, or any other business, industries continuously generate a large quantity of data. They have realized that data is one of their valuable assets and can be used to bring positive outcomes to their businesses. This is because if you process and analyze a massive amount of data correctly, it will show wonders for you. That's why industries focus on data processing and analyzing to retrieve valuable insights and information
Undoubtedly, the pace of generating data is very high in many businesses, mainly social media companies such as Twitter, Facebook, etc. As a result, they constantly accumulate a large quantity of data daily. Know that it is not an easy deal to manage this big data and retrieve helpful information from the data. You need to effectively process the raw data to make it ready for analysis before retrieving helpful information from the data. Only qualified professionals can process the raw big data by applying suitable techniques.
Now, the role of big data engineers comes into the picture. Essentially, big data engineers transform raw data into well-organized and valuable data and help businesses to reap plenty of benefits from big data. There is a huge demand for big data engineers nowadays all over the world. That’s why a career in big data is considered one of the fast-growing and highly-paid careers.
On that note, this blog is prepared for aspirants who wish to become big data engineers. This blog is a quick guide that unpacks the concept of big data, data engineering, and the skills needed to become a big data engineer.
Here we go!
Table of Content: How to become a Big data Engineer? |
Big data is not only a large quantity of data but an ever-growing entity. No surprise that according to the recent survey of Statista, the volume of data generated worldwide is 79 zettabytes up to the year 2021. It is expected that it will reach 181 zettabytes by 2025.
Big data consists of data collected from many sources in different formats. Three types of data are structured, unstructured, and semi-structured. The data can be customer data, transactions, operational data, or others. Credit card data, e-commerce, POS transactions, social media, and sensor reading of IoT devices are a few examples of data. This data would usually be in petabytes and terabytes. Big data engineers use many tools to process this raw data into organized and actionable data. In this regard, they use tools such as Hadoop, Cassandra, Spark, Apache Storm, etc.
If you would like to become an AWS Big Data certified professional, then visit Mindmajix - A Global online training platform: “AWS Bigdata Training". This course will help you to achieve excellence in this domain. |
It is one of the engineering domains that deal with collecting, processing, storing, and organizing big data effectively. Not just that, it also includes developing systems for processing big data. When it comes to storage, big data storage is entirely different from standard data storage. For instance, if you want to store big data, you need to use a dynamic schema in databases – not a fixed schema. Another thing is that you have to use distributed databases for storing big data – not centralized databases.
Scaling is yet another crucial thing in managing big data because it needs dynamic storage systems to keep pace with the ever-increasing data volume. Cloud storage offers the best solution to meet dynamic scaling requirements.
Okay! What does actually a big data engineer mean? Let’s find the answer in this section. A typical big data engineer builds, verifies, and maintains data processing systems. They usually have many crucial roles and responsibilities in managing big data and data processing systems. Here, we will list them all one by one.
As mentioned earlier, a big data engineer transforms the raw data into organized data. Do you want to know how they perform this? Read ahead to know the answer.
Essentially, a big data engineer performs the ETL process. It means that they extract data from multiple sources, transform the raw data into the quality and actionable data using data processing systems, and finally load the data in warehouses and data lakes where it will be in the ready state for downstream processing.
Let’s see how a big data engineer does this in the following step-by-step.
At first, a big data engineer builds and maintains a big data environment. This is where they build large-scale data processing systems and other related resources. This environment includes the required data architecture and tools to process big data. Generally, the data architecture is built based on business needs. Big data engineers build robust processing systems for data ingestion as well as data processing.
At this stage, big data engineers convert the collected raw data into organized, high-quality, and actionable data. It allows them to apply data transformation methods or algorithms to retrieve valuable information from the data. After that, they store data in data warehouses and data lakes for downstream processing. It is important to note that the transformed data will undoubtedly satisfy the quality and compliance standards for further analysis.
Next, big data engineers collaborate with data scientists and analysts to improve the quality of transformed data using different algorithms and advanced tools. They use their expertise by integrating different programming languages and tools to create the best data processing models. As a result, they build efficient data processing models and support to produce high-quality and organized data.
Are you wondering why big data engineers are one of the inevitable resources for any business?
Let’s find the reasons below:
Related Article: Big Data in AWS |
To become a competent big data engineer, you must acquire the skills listed below.
Let’s take a look at them:
You must be able to code in the languages such as C, C++, Java, and Python.
Understanding various data types such as arrays, binary trees, heaps, graphs, queues, and matrices is essential to become a big data engineer. So, you must thoroughly know structured, unstructured, and semi-structured data. Besides, you must be able to use libraries and gather data from various sources.
Knowledge of predictive modeling, text analysis, and Natural Language Processing algorithms is required for big data engineers. You should be able to use robust algorithms to manage data in databases. Additionally, you must be familiar with Machine Learning (ML) algorithms. With this ML knowledge, you can build and automate data processing streams as well as pipelines.
You should deeply understand various data repository structures, APIs, parallel processing databases, relationship diagrams, and cloud storage. Mainly, you should seamlessly be able to work in relational databases such as MySQL, SQL servers, and Oracle.
You must acquire skills in various data transformation algorithms, techniques, and tools.
Managing data pipelines is yet another skill required for big data engineers. So, you must be able to build automated pipelines based on machine learning algorithms. It will help you to transform the data and feed them into downstream processes quickly.
You must be familiar with the tools such as HDFS, Apache Pig, MapReduce, Apache HBase, and Hive. Also, you must be able to use Business Intelligence tools such as Power BI, QlikView, etc.
You should thoroughly know many real-time data processing tools such as Beam, Apache Spark, Kafka, etc.
You must acquire sound knowledge of data mining, modeling, and wrangling techniques. In this regard, you need to learn the tools such as Rapid Miner, KNIME, and Weka in-depth.
Related Article: Data Engineer Interview Questions |
Are you wondering how to become a competent data engineer?
No worries! We help you by providing a helpful roadmap to achieve that.
Let’s have a look at the steps as follows:
Step 1: Education
You must have a bachelor’s degree at the least. And you must have decent computer science, physics, mathematics, and statistics knowledge. You must have gained solid knowledge in functional decomposition, solution engineering, problem resolution, abstraction, etc.
Step 2: Certification
You will need to achieve a professional certificate to sharpen your skills. This is because certifications escalate you to the expertise level in the chosen domain. In a way, it becomes an added advantage to be outstanding among others in the job market.
Let’s see some familiar courses that will significantly elevate your knowledge.
Cloudera Certified Professional (CCP) Data Engineer: You can complete this course to sharpen your skills in data analysis, data staging and storage, data ingestion, and data transformation.
Certified Big Data Professional (CBDP): This certification will help to acquire skills in Business Intelligence tools and data science. This program demands a bachelor's degree and a minimum of one year of working experience as entry qualifications.
Google Cloud Certified Professional Data Engineer: Completing this course will help to polish your skills in data structures, machine learning methods, and data streams.
Step 3: Taking Internships
You need to earn some working experience through internships on noteworthy projects that include data processing, Data warehousing, BI tools, Cloud computing, Data Science, and Data lakes. This experience will assist you in becoming a confident and competent big data engineer.
Step 4: Developing Soft Skills
Of course! Apart from earning technical skills, you must acquire essential soft skills. To achieve this, you will need to:
Related Article: Big Data Analytics Tools |
According to the latest survey of Statista, the Big data analytics industry will have reached up to 15.75 billion US dollars by 2021. And it is expected that it will reach 68 billion US dollars by 2025. These statistics indicate that big data engineers have solid prospects in their careers without a doubt
Next, we will move on to the salary details of a big data engineer in the job market.
According to a Forbes advisor, the salary of a big data engineer comes to around 93,000 USD per year worldwide. And at the same time, according to a survey, the average salary of a big data engineer comes to around 9.5 LPA in India. These salaries are no less than the salaries of software developers or data scientists. So, there are a lot of merits to becoming a big data engineer.
To sum up, you might have gone through what is a big data engineer, the roles and responsibilities of a big data engineer, and the skills required for a big data engineer. We hope the roadmap you have come across in the blog will guide you to gain the required skills and capabilities. Okay! Start your journey to becoming a competent big data engineer at the earliest.
Our work-support plans provide precise options as per your project tasks. Whether you are a newbie or an experienced professional seeking assistance in completing project tasks, we are here with the following plans to meet your custom needs:
Name | Dates | |
---|---|---|
Big Data on AWS Training | Jan 21 to Feb 05 | View Details |
Big Data on AWS Training | Jan 25 to Feb 09 | View Details |
Big Data on AWS Training | Jan 28 to Feb 12 | View Details |
Big Data on AWS Training | Feb 01 to Feb 16 | View Details |
Madhuri is a Senior Content Creator at MindMajix. She has written about a range of different topics on various technologies, which include, Splunk, Tensorflow, Selenium, and CEH. She spends most of her time researching on technology, and startups. Connect with her via LinkedIn and Twitter .